Декогеренция
В 1980-х и 1990-х годах первая часть проблемы прояснилась. Физики наконец поняли, что происходит, когда изначально изолированная квантовая система, такая как отдельный атом, прекрасно чувствующая себя в суперпозиции, становится запутанной с макроскопическим объектом. Как выяснилось, суперпозиция различных состояний, в которой вынужденно оказывается столь сложная система, включающая в себя триллион триллионов атомов, просто не может существовать достаточно долго и очень быстро исчезает, или декогерирует. Можно сказать, что деликатная суперпозиция безвозвратно пропадает среди колоссального числа других возможных суперпозиций, соответствующих различным возможным комбинациям взаимодействий между всеми атомами макроскопической системы. Восстановление оригинальной суперпозиции немного похоже на попытку перетасовать колоду карт таким образом, чтобы все четыре масти оказались отдельно друг от друга, однако осуществить его гораздо более сложно.
Декогеренция представляет собой реальный физический процесс, который постоянно происходит повсеместно. Он запускается, когда квантовая система теряет изоляцию от окружающей макроскопической среды, а ее волновая функция становится запутанной со сложным состоянием этой среды. Средой может быть что угодно – от фоточувствительного экрана до электронного устройства и даже до окружающих систему молекул воздуха. Если связь с этой внешней «средой» оказывается достаточно прочной, изначальная деликатная суперпозиция очень быстро теряется. На самом деле декогеренция представляет собой один из самых быстрых и эффективных процессов во всей физике. Именно эта выдающаяся эффективность и стала причиной, по которой декогеренция так долго не была открыта. Только сегодня физики понимают, как ее можно контролировать и изучать. В Главе 10 я опишу несколько проведенных в последние годы примечательных экспериментов, в которых мы действительно можем увидеть декогеренцию в действии.
Строго говоря, физики утверждают, что волновая функция среды теряет все остатки изначальных корреляций между двумя своими запутанными частями. Пожалуй, ярче это можно описать следующим образом: как только квантовая суперпозиция становится запутанной с внешним миром, вся странность пропадает так быстро, что мы не успеваем засечь ее с поличным.
Процесс декогеренции по-прежнему активно изучается и еще не до конца понят. Но мы хотя бы можем начать распутывать первую часть проблемы измерения. Мы никогда не видим кота Шрёдингера живым и мертвым одновременно, потому что декогеренция в коробке происходит задолго до того, как мы ее откроем. Здесь дело даже не в коте – все случается гораздо раньше из-за наличия устройства, в котором заключены радиоактивное ядро и яд. Именно это и формирует макроскопическую среду, непосредственно окружающую радиоактивное ядро.
Мы можем применить идею декогеренции и к другому примеру – той ситуации, когда детектор регистрирует, по какому из ответвлений интерферометра или сквозь какую из прорезей прошел атом. Здесь все объясняется проще. Чтобы получить информацию о положении атома, детектор должен установить связь с волновой функцией атома, и их запутанность быстро приводит к декогеренции. Обратите внимание, я написал «с волновой функцией атома», а не «с атомом», так как, если детектор не обнаружит атом, это будет означать, что тот пошел другим путем. Кроме того, это «измерение» уничтожит картину интерференции. Так что, хотя детектору и атому нет нужды вступать в физическое взаимодействие в классическом смысле, но с волновой функцией он все же оказывается в запутанном состоянии.
Без детектора, установленного за одной из двух прорезей, декогеренцию провоцирует второй экран. Однако в этом случае остановить появление картины интерференции уже невозможно – две части волновой функции атома слишком долго оставались одни, чтобы между ними возникла интерференция. Само собой, весь фокус с двумя прорезями нужно проводить в вакууме, ведь иначе атом будет сталкиваться с молекулами воздуха и сбиваться с пути. Это все равно что сказать, что декогеренцию в таком случае будет вызывать сам воздух. Впрочем, я чересчур небрежно подобрал слова. Используя фразы вроде «сталкиваться с молекулами», я представил это так, словно атом уже представляет собой классическую частицу с предопределенным положением. Теперь мы знаем, что до декогеренции и проведения измерения мы можем описать атом только при помощи его волновой функции.

- 1. Джим Аль-Халили Квант
- 2. Введение
- 3. Глава 1. Фокус природы
- 4. Фуллерены и эксперимент с двумя прорезями
- 5. Глава 2. Истоки
- 6. Постоянная Планка
- 7. Излучение черного тела
- 8. Эйнштейн
- 9. Частицы света
- 10. Двойственная природа света
- 11. Нобелевская премия Эйнштейна
- 12. Бор: физик, философ, футболист
- 13. В дело вступает французский герцог
- 14. Глава 3. Вероятность и случай
- 15. Вы верите в судьбу?
- 16. Результат игры в пул
- 17. Квантовая непредсказуемость
- 18. Обводящие удары
- 19. Анатомия уравнения
- 20. Самое важное уравнение физики
- 21. Что происходит, когда мы не смотрим?
- 22. Принцип неопределенности Гейзенберга
- 23. Ядерные облака
- 24. Золотые годы квантовой механики
- 25. Радиоактивный распад
- 26. Глава 4. Причудливые связи
- 27. Суперпозиция
- 28. «Объяснение» фокуса с двумя прорезями
- 29. Квантовые интерферометры
- 30. Нелокальность
- 31. Запутанность
- 32. Эксперимент ЭПР
- 33. Квантовый похититель драгоценностей
- 34. ЭПР-парадокс и теорема Белла
- 35. Квантовая хаология
- 36. Глава 5. Наблюдатели и наблюдаемое
- 37. Что видишь, то и получишь
- 38. Гамма-микроскоп Гейзенберга
- 39. «А потом происходит еще кое-что»
- 40. Кот Шрёдингера
- 41. Не говори, какой счет
- 42. Два этапа проблемы измерения
- 43. Декогеренция
- 44. Решает ли декогеренция проблему измерения?
- 45. Глава 6. Великий спор
- 46. Формализм против интерпретации
- 47. Копенгагенская интерпретация
- 48. Нужна ли теории интерпретация?
- 49. Интерпретация де Бройля – Бома
- 50. Многомировая интерпретация
- 51. Что еще есть на рынке?
- 52. Где мы сейчас?
- 53. Квантовая реальность с позиции де Бройля и Бома
- 54. Глава 7. Субатомный мир
- 55. Таинственные лучи повсюду
- 56. Внутрь атома
- 57. Квантовый спин
- 58. Внутрь ядра
- 59. Принцип исключения Паули
- 60. Создание частиц из воздуха
- 61. Ядерные взаимодействия
- 62. Антивещество
- 63. Квантовое туннелирование
- 64. Кварки
- 65. Элементарные компоненты
- 66. Глава 8. В поисках теории всего
- 67. Квантовая теория света
- 68. Калибровочные теории и симметрии
- 69. Цветная сила
- 70. Великое объединение
- 71. Что насчет гравитации?
- 72. Урок Планка
- 73. Теория струн
- 74. Урок Эйнштейна
- 75. Подчеркивая отрицание
- 76. Глава 9. Применение кванта
- 77. Эпоха микрочипа
- 78. Отличная идея ищет применение
- 79. Магниты размером с дом
- 80. Непрерывное электричество
- 81. Энергия из ядер
- 82. Квантовая механика в медицине
- 83. Квантовая механика и генетические мутации
- 84. Микроскопы для наблюдения за атомами
- 85. Атомная инженерия и нанотехнологии
- 86. Конденсаты Бозе – Эйнштейна
- 87. Квантовая механика и биология
- 88. Глава 10. В новое тысячелетие
- 89. Умные эксперименты
- 90. Как отследить атом
- 91. Наблюдая декогеренцию в действии
- 92. Рекордная запутанность
- 93. Квантовая криптография
- 94. Закон Мура
- 95. Кубиты
- 96. Так на что способен квантовый компьютер?
- 97. Квантовые вычисления
- 98. Квантовые логические вентили
- 99. Квантовое клонирование
- 100. Как построить квантовый компьютер
- 101. Квантовый мозг
- 102. Квантовая телепортация
- 103. Литература для дополнительного чтения
- 104. Авторы иллюстраций
- 105. Благодарности
- 106. Примечания
- 107. 1
- 108. 2
- 109. 3
- 110. 4
- 111. 5
- 112. 6
- 113. 7
- 114. 8
- 115. 9
- 116. 10
- 117. 11
- 118. 12
- 119. 13
- 120. 14
- 121. 15
- 122. 16
- 123. 17
- 124. 18
- 125. 19
- 126. 20
- 127. 21
- 128. 22
- 129. 23
- 130. 24
- 131. 25
- 132. 26
- 133. 27
- 134. 28
- 135. 29
- 136. 30
- 137. 31
- 138. 32
- 139. 33
- 140. 34
- 141. 35
- 142. 36
- 143. 37
- 144. 38
- 145. 39
- 146. 40
- 147. 41
- 148. 42
- 149. 43
- 150. 44
- 151. 45
- 152. 46
- 153. 47
- 154. 48
- 155. 49
- 156. 50
- 157. 51
- 158. 52
- 159. 53
- 160. 54
- 161. 55
- 162. 56
- 163. 57
- 164. 58
- 165. 59
- 166. 60
- 167. 61
- 168. 62
- 169. 63
- 170. 64
- 171. 65
- 172. 66
- 173. 67
- 174. 68
- 175. 69
- 176. 70
- 177. 71
- 178. 72
- 179. 73
- 180. 74
- 181. 75
- 182. 76
- 183. 77
- 184. 78
- 185. 79
- 186. 80
- 187. 81
- 188. 82
- 189. 83
- 190. 84
- 191. 85
Комментариев: 0